先进成像

激光与光电子学进展

图像非刚体匹配的多模型估计算法设计与实现

魏若岩1*,霍思园1,朱晓庆2

¹河北经贸大学信息技术学院,河北 石家庄 050061; ²北京工业大学信息学部,北京 100124

摘要 针对非刚体匹配图像的外点去除问题,提出了一种多匹配模型估计方法。首先,考虑到匹配点集合中可能存在高外点率,用基于近邻内点分布的一致性对匹配点集合的内点率进行提升;然后,为了降低内点距离误差阈值 对内点提取的影响,用内点距离误差边缘化进行多模型估计;最后,考虑到提取的内点集合中可能残留部分外点, 用基于匹配点位置变化矢量方向的一致性对残留外点进行去除。实验中,所提方法与MAGSAC、NM-NET、 P-NAPSAC、SC-RANSAC、Adalam、OANET、SuperGlue、PEARL、Multi-H、Multi-X以及CONSAC等方法进行对 比,结果表明所提方法的内点距离误差可降低30%以上,外点残留率可降低50%以上,内点召回率可提高8%以 上,运行时间可降低10%以上,多平面估计的错分率可降低16%以上。

关键词 机器视觉; 多匹配模型估计; 非刚体匹配; 大视角; 多平面估计 中图分类号 TP73 **文献标志码** A

DOI: 10. 3788/LOP202259. 1215018

Design and Implementation of Multimodel Estimation Algorithm for Nonrigid Matching Images

Wei Ruoyan^{1*}, Huo Siyuan¹, Zhu Xiaoqing²

¹College of Information Technology, Hebei University of Economics and Business, Shijiazhuang 050061, Hebei, China; ²Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

Abstract An algorithm of multimatching model estimation is proposed for the problem of outliers removed from nonrigid matching images. First, considering the high probability of outlier ratio in the matched point set, the inlier ratio promotion based on the consensus of the distribution of neighbor inliers was applied. Second, to reduce the influence of the inlier distance error threshold on the inlier extraction, a multimodel estimation was applied using the inlier distance error marginalization. Finally, considering the probability of residual outliers in the extracted inlier set, residual outliers were removed based on the consensus of the direction of the matching point position change vector. In the experiments, the proposed method is compared with MAGSAC, NM-NET, P-NAPSAC, SC-RANSAC, Adalam, OANET, SuperGlue, PEARL, Multi-H, Multi-X, and CONSAC, etc. Results indicate over 30% reduction in the inlier distance error, 50% reduction in the outlier residual rate, 8% increase in the recall of inlier, 10% reduction in the misclassification rate of multiplanar estimation.

Key words machine vision; multimatching model estimation; nonrigid matching; extensive viewpoint; multiplane estimation

收稿日期: 2021-08-13; 修回日期: 2021-09-27; 录用日期: 2021-10-19

基金项目:国家自然科学基金(61773027,62103009)、河北省重点研发计划(17216108)、河北省科研与教学研究项目 (2019GJJG172)、河北省自然基金(F2018207038)、北京市自然基金面上项目(4202005)、河北省教育厅科研项目 (QN2020186)、河北经贸大学重点研究项目(2021ZD08)

通信作者: *weiruoyan1984@163.com

1引言

图像的特征点匹配可用于三维重建、视觉测量 以及地图构建等重要领域[1],其中内点(正确匹配) 提取是该项技术的关键,可将其分为两大类[2],即针 对刚体匹配的最优模型估计和针对非刚体匹配的 多模型估计。刚体匹配指当视角差异较小时,图像 间只存在平移、旋转以及缩放的变化,只需对图像 间的主模型进行估计,即最优模型估计,代表方法 是 RANSAC^[3]。该方法在每次迭代中抽取少量的 匹配并计算出匹配模型,然后进行回代得到符合当 前模型的匹配数量,最后将有最多数量匹配的模型 视为最优模型,符合最优模型的匹配点被称为内 点。 RANSAC 的 衍 生 算 法 包 括 NAPSAC^[4]、 PROSAC^[5] SCRAMSAC^[6] LO-RANSAC^[7] PNAPSAC^[8]、SC-RANSAC^[9]以及MAGSAC^[10]等。 NAPSAC认为内点分布具有聚集性,在局部区域进 行内点搜索。PROSAC利用了 distance ratio^[11]提高 内点率。受NAPSAC启发,SCRAMSAC通过内点 在局部区域分布的一致性对外点进行过滤。 PNAPSAC 和 SC-RANSAC 是 NAPSAC 与 PROSAC 的结合。MAGSAC是一种内点距离误差阈值边缘 化方法,它能减小距离误差阈值对内点准确率及精 度的影响。非刚体匹配指当匹配图像间存在宽基 线及大视角差异时,图像间存在多个匹配模型。 Park 等^[12]提出了 Sequential-RANSAC,该方法先用 distance ratio 提高内点率,然后用 RANSAC 估计出 最优模型并把相关内点去掉,再进行下一个最优模 型的估计,直到所有模型被估计出,但是需要大量 迭代,时效性较差。Cavalli等^[13]提出了AdaLam算 法,该方法用distance ratio选取关键点,然后对每个 关键点所在的局部区域进行 RANSAC。DD^[14]、 SM^[15]、GS^[16]基于内点的几何图结构对外点过滤,它 们都属于NP-Hard问题^[17-18],需要较多的计算资源, Caetano 等^[19]将图结构匹配问题转换为线性问题, 从而降低了运算成本。GMS^[20]对图像进行网格化, 单个网格代表局部区域,以每个网格进行外点过 滤,但是当图像视角差异较大,缩放比例非常明显

时,该方法不再适用^[21-22]。Point-NET^[23]和Point-NET++^[24]也利用了内点分布的聚集性,并通过匹 配点的上下文特征和注意力机制提高算法性能,前 者可提高网络的稳定性和高效性,后者关注特定元 素和属性来实现全局特征与局部特征的聚合。Yi 等^[22]在 Point-NET 基础上提出了 PointCN,该方法 对匹配点进行上下文的特征提取,然后与坐标点位 置相结合后形成描述信息,再利用内点分布,采用 了全局上下文归一化的方式降低了不同匹配点之 间的差异性。Zhang等^[25]在PointCN的基础上提出 了OANET,该方法可获取稀疏匹配点的局部上下 文特征,并用Order-Aware 过滤模块获取全局上下 文特征。Zhao 等^[26]提出的 NM-Net 先用 distance ratio 选取关键点,然后通过匹配点分布的一致性对 关键点周边的外点进行过滤,最后用样本集对神经 网络进行端到端的训练。Sarlin等^[18]提出了基于图 神经网络的模型估计算法 SuperGlue, 它采用注意 力机制增强局部特征差异性。但是基于学习的方 法依赖训练样本,训练样本决定了模型的性能^[20]。

2 研究内容

2.1 Distance ratio 的局限性

Distance ratio 用于内点率提升,先对匹配点的 描述进行排序,然后通过最优描述与次优描述的比 值过滤部分外点^[11],比值的大小与内点的可能性 成反比,这个比值的阈值设为0.6~0.8。基于 distance ratio的内点率提升在最优模型估计和多模 型估计中广泛应用,如PROSAC、PNAPSAC、SC-RANSAC, Adalam, Sequential-RANSAC, NM-NET 等。但是当图像间视角差异较大时, distance ratio将不再适用。图1为序列图像间的匹配,其中 1mN表示序列的第1幅图像与第N幅图像匹配,随 着视角差异的增大,基于distance ratio(阈值0.8) 得到的匹配结果中的外点比例逐渐增大。从图2 distance ratio 的直方图中也能看出,随视角差异的 增大, distance ratio 趋向于1, 这说明当视角差异增 大时, distance ratio 与内点之间的相关性逐渐 降低。

图1 Distance ratio 阈值为0.8时的图像匹配^[27]。(a) 1m2; (b) 1m3; (c) 1m4; (d) 1m5

Fig. 1 Image matching at distance ratio threshold of 0. 8^[27]. (a) 1m2; (b) 1m3; (c) 1m4; (d) 1m5

图 2 匹配图像的distance ratio 直方图。(a) 1m2; (b) 1m3; (c) 1m4; (d) 1m5 Fig. 2 Histograms of distance ratio of matching images. (a) 1m2; (b) 1m3; (c) 1m4; (d) 1m5

2.2 基于内点局部区域分布聚集性的算法局限性

内点在局部区域的分布通常具有一定的聚 集性,很多算法利用了此特性,例如NAPSAC、 SCRAMSAC、PNAPSAC、SC-RANSAC、GMS、 PointCN、NM-NET及OANET等。它们认为匹配 点在局部范围内如有相似的分布,则这些匹配点有 较高的可能性是内点,但前提是图像间有较小的视 角差异,若视角差异较大,局部区域的范围将无法 确定。图3为缩放图像之间的匹配图,图3(a)为正 确匹配点(内点)。图3(b)为正确匹配点(黄色)与 错匹配点(红色)的分布,内点率为5.1%,图3(b)左 图中内点与近邻内点相距较远,而图3(b)右图中相 距较近,虽然内点间的位置关系在两幅图像中一 致,但是内点之间的距离关系在两幅图像中差异显 著,所以基于内点局部区域分布聚集性的算法不适 用于这类图像。

图3 缩放图像中内外点分布示意图^[28]。(a)正确匹配;(b)内外点分布(红点为外点,黄点为内点)

Fig. 3 Distribution of inliers and outliers in the matched images with zoom change^[28]. (a) Correct matched pairs; (b) distribution of inliers and outliers (red points are outliers, yellow points are inliers)

2.3 外点残留问题

外点残留指内点提取后部分外点被误认为是内 点,原因有两方面^[2]:第一,残留的外点符合某个模 型,但是与它的近邻内点所对应的模型不是同一个模 型;第二,内点距离误差阈值设置偏大,部分外点被误 认为是内点。图4中用矩形框出的就是残留的外点, 它们的变化矢量与近邻内点的变化矢量有明显的差 别。所以从非刚体匹配中去除残留的外点就显得尤 为重要,但是目前还没有方法用于处理外点的残留问 题,尤其是针对非刚体匹配的外点残留问题。

图4 外点二次去除示意图^[29]。(a)已有算法得到的匹配;(b)内点位置变化矢量及掺杂的外点

Fig. 4 Secondary removal of outliers^[29]. (a) Matched pairs obtained by existing method; (b) vectors of position change between inliers, and the included outliers

2.4 研究内容

针对以上问题,提出一种针对非刚体匹配的多 模型估计算法,分为三步,也是本文的三个创新,第 一是内点率提升。针对图像间的大视角差异,提出 一种基于紧邻点分布一致的自适应内点率提升方 法,该方法未使用distance ratio,利用探究方式探索 每个匹配周边的近邻内点。第二是多模型估计。 为降低固定阈值对内点提取结果的影响,提出一种 基于距离误差边缘化的多模型估计算法,该算法通 过内点距离误差的概率分布获取最佳阈值,并在此 基础上提出了基于距离误差边缘化的终止条件。 第三是残留外点滤除。为去除残留的外点,提出一 种基于匹配点位置变化矢量方向一致性的外点二 次滤除。图5为所提方法流程图。

图 5 所提方法流程图 Fig. 5 Flow chart of the proposed method

3 所提方法内容

3.1 基于近邻内点分布一致的内点率提升

提出一种基于近邻内点分布一致性的自适应外 点过滤方法,利用探究方式发现每个匹配点周边内点 的分布特征。如图6所示,(A, A')、(B, B')、(C, C')为 三对匹配点,A的近邻点为B和C, A'的近邻点为B', C'不在近邻点内,所以B和B'两点在(A, A')附近有 相同的分布,所以该方法的目的就是提取(B, B')这样 的匹配点,从而提高内点率。首先,利用knn紧邻搜索 算法为每个匹配点搜索近邻点,左右两幅图像中的近 邻点数均为10,即 $k_L = k_R = 10$;然后,确定匹配点的近 邻点交集 s_i ,若交集为非空,则计算交集点到各个匹配

图6 近邻点分布一致示意图

Fig. 6 Schematic of conscient distribution of neighbor points

点的平均距离 $\overline{d_i^{\text{L}}}$ 和 $\overline{d_i^{\text{R}}}$,其中i = 1, 2, ..., n, n为交集的 长度,令 $\gamma = \overline{d_i^{\text{L}}} / \overline{d_i^{\text{R}}}$,若 $\gamma \ge 1$,则 $k_{\text{L}} = \gamma k_{\text{L}}$,否则 $k_{\text{R}} = k_{\text{R}}/\gamma$,根据更新的 k_{L} 和 k_{R} 获取新的近邻点并更新近邻 点交集 s_i ;最后,取并集, $S = s_1 \cup s_2 ... \cup s_n$,S为内点率 提升后的匹配集合。图7为所提算法流程。

Input	A: the original n pairs of correspondences, $s_{p_i} = \{p_i^L, p_i^R\}$, $i = 1, 2, \dots, n$;
	$k_{\rm L}$, $k_{\rm R}$: number of neighborhood points that used in knn for the left and right image respectively, the initial
	values are $k_{\rm L} = k_{\rm R} = 10;$
	s : the set after inlier ratio promotion, the initial of the set is \emptyset .
Outpu	t: S
Proce	55:
For ea	ch pair: s_p^{+} (<i>i</i> = 1, 2,, <i>n</i>)
Fin	d $k_{\rm L}$ neighborhood points of point $p_i^{\rm L}$ in the left image and $k_{\rm R}$ neighborhood points of point $p_i^{\rm R}$ in the
rigł	t image respectively with the help of knn, and get the corresponded sets s_i^L and s_i^R , let $s_i = s_i^L \cap s_i^R$;
If	$s_i eq \phi$
	Get $\overline{d_i^L}$ and $\overline{d_i^R}$, which is the average distance from the neighborhood points to the point p_i^L and p_i^R , let
	$\gamma = \overline{d_i^{\rm L}} / \overline{d_i^{\rm R}} ;$
	If $\gamma \ge 1$, let $k_{\rm L} = \gamma k_{\rm L}$; Else $k_{\rm R} = k_{\rm R} / \gamma$; End;
	Find $k_{\rm L}$ neighborhood points of point $p_i^{\rm L}$ in the left image and $k_{\rm R}$ neighborhood points of point $p_i^{\rm R}$ in
	the right image respectively with the help of knn, and get set s_i^L and s_i^R , let $s_i = s_i^L \cap s_i^R$;
En	d
$k_{\rm L}$	$=k_{\rm R}=10$;
End	
$S = s_1 l$	$\bigcup s_2 \cdots \bigcup s_n$

图 7 基于近邻内点分布一致性的内点率提升算法

Fig. 7 Algorithm of inlier ratio promotion based on near neighbor inlier distribution consensus

3.2 基于距离误差边缘化的多模型估计

3.2.1 匹配模型

只考虑两种匹配模型:单应性矩阵H和基础矩阵F,令 S_T 为内点集合,当{ p_i^L , p_i^R } $\in S_T$ 时,距离误差符合

$$\begin{cases} \left| \begin{bmatrix} p_i^{\mathrm{R}}, 1 \end{bmatrix}^{\mathrm{T}} - \boldsymbol{H} \begin{bmatrix} p_i^{\mathrm{L}}, 1 \end{bmatrix}^{\mathrm{T}} \middle| \leq \delta_{\boldsymbol{H}} \\ \left| \frac{\begin{bmatrix} p_i^{\mathrm{R}}, 1 \end{bmatrix} \boldsymbol{F} \begin{bmatrix} s_i^{\mathrm{L}}, 1 \end{bmatrix}^{\mathrm{T}}}{(\boldsymbol{F} p_i^{\mathrm{L}})_1^2 + (\boldsymbol{F} p_i^{\mathrm{L}})_2^2 + (\boldsymbol{F}^{\mathrm{T}} p_i^{\mathrm{R}})_1^2 + (\boldsymbol{F}^{\mathrm{T}} p_i^{\mathrm{R}})_2^2} \right| \leq \delta_{\boldsymbol{F}}, \end{cases}$$

$$(1)$$

式中: δ_{H} 和 δ_{F} 为距离误差阈值,通常为10 pixel; Fp_{i}^{L} 和 $F^{T}p_{i}^{R}$ 均是尺寸为3行1列的矩阵; $(Fp_{i}^{L})_{1}^{2}$ 和 $(Fp_{i}^{L})_{2}^{2}$ 是 Fp_{i}^{L} 的第1项和第2项的平方, $(F^{T}p_{i}^{R})_{1}^{2}$ 和 $(F^{T}p_{i}^{R})_{2}^{2}$ 是 $F^{T}p_{i}^{R}$ 的第1项和第2项的平方。

3.2.2 数据结构与参数

建立存储多个模型的序列*M*,初始长度为0;建 立存储每个模型内点集合的序列*I*,初始长度为0; 设置最大迭代次数 n_{max} ;计算模型所需的匹配数量 m,为单应性矩阵时, m=4,为基础矩阵时, m=7; $最大内点距离误差阈值为<math>\delta_{max}$,即10 pixel;设置用 于判断能都接受当前模型的内点数量阈值 T_{min} ,如 果符合当前模型的内点数量不小于阈值 T_{min} ,则该 模型被接受,如果小于阈值 T_{min} ,则该模型被抛弃, 阈值 T_{min} 的大小与被接受的模型是错误模型的风险 成反比,将阈值 T_{min} 设置为m的函数,即 $T_{min} = m_o$ 3.2.3 内点距离误差边缘化

内点的提取决定内点距离误差阈值,通常由人 工设定,不同图像的阈值分布差异较大,如图8所示 的数据集^[28]中的部分匹配图像,即使图像尺寸接 近,内点距离误差(distance error)分布差异也十分 明显,两组图像Effel和ExtremeZoom的尺寸为 1198×958×3和1519×1006×3,平均值为5.22 pixel 和1.68 pixel,若用相同阈值则对内点的准确率和精 度造成较大的影响。在MAGSAC的基础上将距离 误差边缘化,即如果符合当前模型G的内点数大于 T_{min},则建立当前模型的距离误差正态分布:

$$p(\delta|G) = \frac{1}{\sqrt{2\pi} \tau_G} \exp\left[\frac{-(\delta - \mu_G)^2}{2\tau_G^2}\right], \quad (2)$$

式中:µ_G为当前模型的距离误差期望;τ_G为方差。 距离误差表达式为

$$\delta = \begin{cases} \delta_{\max}, & \mu_G > \delta_{\max}/2 \\ \delta_{\text{sub-max}}, & \mu_G \leqslant \delta_{\max}/2 \end{cases}$$
(3)

当 $\mu_G > \delta_{\text{max}}/2$,如 Graf 和 Effel, δ 取 值 δ_{max} ;若 $\mu_G \leqslant \delta_{\text{max}}/2$,如 Boston、Brugge Tower、Extreme Zoom, δ 取 值 $\delta_{\text{sub-max}}$ 。设置 φ (同 MAGSAC^[10],为 0.9)为接受 概率,求出满足 φ 的距离阈值 δ :

$$F(\delta \leqslant \delta_{\text{sub-max}}|G) \geqslant \psi \Leftrightarrow \underset{\delta_{\text{sub-max}}}{\arg \min} \left[\Phi\left(\frac{\delta_{\text{sub-max}} - \mu_G}{\tau_G}\right) - \Phi(\psi) \right] \otimes \Phi\left(\frac{\delta_{\text{sub-max}} - \mu_G}{\tau_G}\right) - \Phi(\psi) \geqslant 0, \quad (4)$$

式中:F为 δ 的累计概率; σ 是标准正态分布。将距离 误差小于 δ 的匹配构成当前模型G的内点集合 I_{nnero} 式(4)为选取刚刚满足 $F(\delta \leq \delta_{sub-max}|G) \geq \psi$ 的 $\delta_{sub-max}$ 即 $\delta_{sub-max}$ 既要满足 $\sigma(\frac{\delta_{sub-max}-\mu_G}{\tau_G}) \geq \sigma(\psi)$,还要满足 它们之间的差值最小。

图 8 内点距离误差直方图。(a) Boston; (b) BruggeTower; (c) ExtremeZoom; (d) Graf; (e) Effel Fig. 8 Histograms of inlier distance errors. (a) Boston; (b) BruggeTower; (c) ExtremeZoom; (d) Graf; (e) Effel

3.2.4 多模型估计

提出一种多模型估计算法。具体步骤:抽取 m个匹配得到当前匹配模型G,判断G在原始匹配 集合A的内点集合 I_{nner} 的长度是否大于 T_{min} ,若不满 足,则重新抽取匹配,若满足,判断模型序列M的长 度是否为0;如果为0,则将G放入M,将 I_{nner} 放入内 点集合序列I,若不为0,判断 I_{nner} 与I中所有元素的 交集的长度是否小于 $a|I_{nner}|(\alpha 为 0.1 \sim 0.2);若满$ $足,则从<math>I_{nner}$ 中去掉交集后得到 I'_{nner} ,若 $|I'_{nner}|大于$ $<math>T_{min}$,用最小二乘法得到 I'_{nner} 的模型G',并分别将G'和 I'_{nner} 放入G和I中;若 I_{nner} 与I某个元素 I_i 的交集的 长度大于 $\alpha | I_{nner} |, 则 令 I'_{nner} = I_{nner} \cup I_i, 并用最小二乘$ 法求出模型 G'的内点集合 I["], 若 I["]均大于 I_{nner} 和 I_i,分别将 G'和 I["]放入 G和 I 中。

3.2.5 基于内点距离误差边缘化的终止条件

定义两个终止条件 n_{max} 和 k(A, M, t),满足其一 即可,k(A, M, t)是第 t次迭代时所需的最少迭代次数,k(A, M, t)随迭代次数的增加而变化,即

$$k(A, M, t) = \left[\frac{(\delta_i - \delta_{i-1}) \ln (1 - \eta)}{\ln [1 - (|I(\delta_i, A, t)|/|A|)^m]} p(t, \delta_i) \right], \quad (5)$$

$$\vec{x} \div K \notin \delta_{\max} \notin T$$

$$L(\delta_i, A, \eta, t) = \frac{\ln(1-\eta)}{\ln\left[1-\left(\left|I(\delta_i, A, t)\right|/|A|\right)^m\right]} \, \mathfrak{H} \, \mathfrak{E}$$

第t次迭代下误差小于等于 δ_i 时所需的最少迭代次数; η 是置信参数,一般取 $\eta=0.95$;A是原始匹配集合,|A|是集合长度; $I(\delta_i, A, t)$ 是在第t次迭代时距离误差不大于 δ_i 的内点数;m是计算模型所需的匹配数; $p(t, \delta_i)$ 为第t次迭代时,内点距离小于 δ_i 的内

点数所占的比例。

$$p(t,\delta_i) = \left| I(\delta_i, A, t) \right| / \sum_{i=1}^{K} \left| I(\delta_i, A, t) \right|_{\circ} (6)$$

令 $N_{\rm M}$ 是当前模型数量, $p[t, \delta_i, M(j)]$ 是在第 t次迭代时距离误差不大于 δ_i 且符合模型 M(j)的内 点比例,则 $p(t, \delta_i) = \sum_{j=1}^{N_{\rm M}} p[t, \delta_i, M(j)]$,式(6) 变为

$$k(A, M, t) = \left\{ \frac{(\delta_i - \delta_{i-1}) \ln(1 - \eta)}{\ln\left[1 - (\left| I(\delta_i, A, t) \right| / |A|)^m\right]} \sum_{j=1}^{N_{\rm M}} p[t, \delta_i, M(j)] \right\}_{\circ}$$
(7)

图 9 为基于距离误差边缘化的多模型估计算法流程。

Input: A: the original *n* pairs of correspondences, $s_{p_i} = \{p_i^L, p_i^R\}$, $i = 1, 2, \dots, n$;

S: the set that contains
$$n'$$
 pairs of correspondences after inlier ratio promotion

m: number of matched pairs needed that can get the model

- δ_{\max} : the maximum threshold of error distance;
- $n_{\rm max}$: the maximum number of samples;

M: the sequence that contains different models in the process, the initial length of the sequence is 0;

- *I* : the sequence that contains different set of inliers, the initial length of the sequence is 0;
- η : the confidence parameter that is applied in Eq. (7);

K: step length;

 T_{\min} : the least number of correspondences that satisfy the model, in general, the value is set to be10;

- α : a factor, the range of value is from 0.1 to 0.2;
- a_{Flag} : a logo, if $a_{\text{Flag}} == 0$, the current situation doesn't satisfy the termination condition, and if $a_{\text{Flag}} == 1$, the

current situation satisfy the termination condition;

- N : the number of current iterations;
- $N_{\rm M}$: a counter, which records the number of models, the initial value is 1.

Output: M and I

Process:

 $N_{\rm M} = 1$; $a_{\rm Flag} = 0$

While $(a_{\text{Flag}} == 0)$

Select *m* matched pairs randomly from *S*, and get the current hypothesis *G*; Calculate the distance error δ of each matched pair by Eq. (1);

Get the matched pairs whose distance error smaller than δ_{max} , and get I_{mer} according to Eq. (2)-(4); If $|I_{\text{nner}}| \ge T_{\text{min}}$

If $I = \varnothing$, $I(N_M) = I_{nner}$, $M(N_M) = G$, $N_M + = 1$; End If $I \neq \emptyset \& |I_{nner} \cap (I_1 \cup \cdots \cup I_{N_M}) \leq \alpha |I_{nner}| \& |I_{nner} - I_{nner} \cap (I_1 \cup \cdots \cup I_{N_M})| \geq T_{min}$ get the model G' that satisfies $I(N_{\rm M})$ by least squares method; $M(N_{\rm M}) = G', \quad I(N_{\rm M} + 1) = I_{\rm nner} - I_{\rm nner} \cap [I_1 \cup \cdots I(N_{\rm M})], \quad N_{\rm M} + = 1;$ End If $I \neq \emptyset \& |I_{nner} \cap (I_1 \cup \cdots \cup I_{N_M}) > \alpha |I_{nner}|, I'_{nner} = I_{nner} \cup I_i$ get the model G' that satisfies I'_{nner} by least squares method; if $|I'_{nner}| \ge |I_{nner}| \& |I'_{nner}| \ge |I_i|$, $I(N_M + 1) = I''_{nner}$, $M(N_M + 1) = G'$, $N_M + 1$; end End If $N \ge n_{\max}$ $a_{\text{Flag}} = 1;$ End Get k(A, M, t) according to Eq. (7); If $N_{\rm M} \ge 2$ and $N \ge k(A, M, t)$ $a_{\text{Flag}} = 1;$ End End

图 9 基于距离误差边缘化的多模型估计算法

Fig. 9 Multi-model estimation algorithm based on distance error marginalization

研究论文

第 59 卷 第 12 期/2022 年 6 月/激光与光电子学进展

3.3 基于匹配点位置变化矢量方向一致性的外点 二次去除

文献[2,20]证明了局部区域中内点位置变化矢量具有高度一致性,如图10所示,可看出图像局部区域的内点位置变化矢量基本一致。图10(a)、(b)为图像间旋转和平移的变化,可看出局部区域的内点位置变化矢量不但方向基本一致,矢量的长度也基本

一致。图 10(c)、(d)为图像间的缩放变化。图 10(c) 中内点较多,且较密集,所以局部区域的内点位置 变化矢量的长度较为一致。但是图 10(d)中内点较 少,且分布稀疏,相邻内点的位置变化矢量的长度 差异较大,但是矢量方向较为接近,所以在局部区 域,矢量的方向相比矢量的长度具有更显著的一 致性。

图 10 内点位置变化矢量。(a) Leafs^[28]; (b) Toy and Bread^[29]; (c) Booksh^[28]; (d) ExtremeZoom^[28]

提出一种基于位置变化矢量方向一致性的外 点二次去除方法,分三步。第一步,图像网格化,网 格边长为图像对角线长度的0.05。第二,计算网格 中内点位置变化矢量的平均方向*词*:

$$\overline{\theta} = \sum_{i=1}^{n} \theta_i / n, \ \theta_i =$$

$$\arg \sin\left(\frac{dx_i}{\sqrt{dx_i^2 + dy_i^2}}\right), \qquad dx_i, dy_i \ge 0$$

$$\arg \sin\left(\frac{dx_i}{\sqrt{dx_i^2 + dy_i^2}}\right) + \pi, \qquad dx_i \le 0, dy_i \ge 0$$

$$-\arg \sin\left(\frac{dx_i}{\sqrt{dx_i^2 + dy_i^2}}\right) + \pi, \qquad dx_i, dy_i \le 0$$

$$2\pi - \arg \sin\left(\frac{dx_i}{\sqrt{dx_i^2 + dy_i^2}}\right), \qquad dx_i \ge 0, dy_i \le 0$$

式中: θ_i 为网格内第i个匹配的位置变化矢量方向;n是局部区域中匹配的数量。匹配在左右两幅图像 中的位置分别为 $(x_i^{\text{L}}, y_i^{\text{L}})$ 和 $(x_i^{\text{R}}, y_i^{\text{R}})$, dx_i 和 dy_i 分别 为第i个匹配点在x和y方向的位置差,即 $dx_i = x_i^{\text{R}} - x_i^{\text{L}}$, $dy_i = y_i^{\text{R}} - y_i^{\text{L}}$ 。第三,计算网格内所有匹配 位置变化矢量方向与平均方向的误差绝对值,将方 向误差大于阈值 ϑ (通过多组实验观察得到为 $\pi/6$) 的匹配点视为外点,若网格内匹配数少于m(m是得 到模型所需最少的匹配点数量),则将近邻区域的 匹配点包含进来,再计算平均方向,如果匹配对的 数量依然小于m,则将该网格的匹配视为正确匹配 并保留。网格与近邻区域示意图如图 11 所示。 图 12为外点二次去除算法流程。

(8)

图 11 图像网格化、局部区域和近邻区域示意图 Fig. 11 Schematic of image gridding and local area with its neighbor areas

4 实 验

为验证所提算法,从自适应外点过滤、内点距 离误差阈值边缘化、多模型估计、外点残留以及多 平面估计等多个方面进行对比,所有实验的最大迭 代次数为5000,特征点为5K-SIFT^[7,30](5000个 SIFT匹配),运行环境为MATLAB2017a,Corei5

处理器,8G内存。

4.1 内点率提升实验

选用 homogr 数据集^[28],选取 9 组图像,对比算法 为 NM-NET 和 SCRAMSAC。图 13 为 homogr 中的 9 组图像实验结果,homogr 体现图像间旋转、平移及 缩放。图 13(a)为内点率,图像的内点率均小于 30%, 其中 3 组图像(ExtremeZoom、CapitalRegion 和 Boat)的 **Input:** *I* : the sequence that contains different sets of inliers;

- ϑ : threshold of direction error, which is set $\pi/6$;
- β : a factor, which is set 0.07;
- m: number of matched pairs needed that can get the model;
- **Output:** *I*, which is updated.

Process:

Get the w and h, which is the width and height of the image in respectively, and get the length of diagonal $l = \sqrt{w^2 + h^2}$, gride the image, and the side length of a gride is βl ; For each (x_i, y_i)

Count number of position change vectors of matched point in each grid n_i ;

If $n_i \ge m$ $L_{area} = (x_i, y_j)$; Else $L_{area} = \bigcup_{i-1 \le i \le i+1; j-1 \le j \le j+1} (x_i, y_j)$; End; Cot \overline{a} in L by Eq. (8)

Get $\overline{\theta}$ in L_{area} by Eq. (8), and get the distance error between each position change vector and $\overline{\theta}$ in L_{area} , and remove the matched points that their position change vector is large than ϑ ;

End End

图 12 外点二次去除算法

Fig. 12 Secondary removal algorithm of outlier

Fig. 13 Experimental results on homogr dataset. (a) Inlier ratio of different image pairs; (b) inlier ratio after outlier filtering out; (c) recall of inliers; (d) original number of matched pairs; (e) number of matched pairs after outlier filtering out

内点率小于10%。图13(b)为外点过滤后的内点率, 可看出三个算法均对内点率进行了显著的提升,虽然 NM-NET和SCRAMSAC的效果在多数情况下优于 所提方法,但是对ExtremeZoom和CapitalRegion两 组图像的内点率为0,所提方法得到的内点率均超过 了30%。图13(c)为经外点过滤后的内点召回率,所 提方法的效果显著优于NM-NET和SCRAMSAC, 部分图像的召回率接近100%。图13(d)和图13(e) 分别为原匹配数量和经外点过滤后的匹配数量明显多于

NM-NET 和 SCRAMSAC。

4.2 基于距离误差边缘化的实验

选取 5个对比算法,包括 RANSAC、RANSAC-RT (distance ratio is 0.8)、Adalam、NM-NET 及 MAGSAC。设置最大距离误差阈值 δ_{max} =10 pixel, 所提方法和 MAGSAC 的接受概率均为 0.9。实验 数据集为 homogr、kusvod2及 Adelaidermf中的 70组 图像,每个数据集运行 20次,然后取每个算法的内 点距离误差的平均值,图 14 给出了实验对比结果。 所提方法与 MAGSAC 的内点距离误差明显小于其

图 14 不同方法得到的内点距离误差

Fig. 14 Inlier distance error obtained by different methods

他算法,内点距离误差可降低30%以上,并且所提 方法略优于MAGSAC,内点距离误差可降低5% 左右。

4.3 多模型内点估计与外点残留率实验

实验选取10组图像,分为室内图像和室外或旅行图像两部分,如表1所示。室内图像为Wash、Scene0722、Scene0758、Scene0726以及Toys and Breads,

其中 Wash 取自 kusvod2^[28], Scene0722-0726 取自 SuperGlue^[18], Toys and Breads 取自 Adelaidermf^{29]}, 前四 组图像有明显的视角差异, Toys and Breads 是多个 物体在相同视角下的不同摆放。室外图像为Graf、 Scared Heart、Saint Peter's Basilica、Kremlin 以及 Potala,其中 Graf 取自 graf 数据集^[27], Scared Heart 和 Saint Peter's Basilica 均取自 CVPR2020 图像匹 配挑战赛数据集^[31], Kremlin取自NM-NET数据 集^[26], Potala则取自网络数据^[30-32]。除Graf,其他组 图像均是对同一景点在不同时间和地点由不同的 相机拍摄得到的,视角和光照差异明显。对比算法 是 RANSAC、PROSAC、NAPSAC、P-NAPSAC、SC-RANSAC、Adalam、OANET 以及 SuperGlue,其中 RANSAC, PROSAC, NAPSAC, P-NAPSAC, SC-RANSAC 为最优模型估计, Adalam、OANET、 SuperGlue及所提方法为多模型匹配估计。比对指标 包括匹配数量 (n_{oi}) 、残留的外点数 (n_{or}) 、运行时间(t)。

表1 匹配图像信息 Table 1 Information of image pairs

	Indoor					Outdoor					
Parameter	W. a.l.	Scene	Scene	Scene	Toys and	Graf	Scared	Saint Peter's	Vl's	Potala	
	w asn	0722	0758	0726	Breads		Heart	Basilica	Kremin		
Size/(pixel $ imes$	768 imes	1296 imes	1296 imes	1296 imes	100 × 610	$800 \times$	1065 imes 693/	$1039 \times 688 /$	$800 \times 500/$	$1023 \times 682/$	
pixel)	576	968	968	968	480 × 040	640	$1039 \! \times \! 687$	1032×771	800×541	1400×808	
Number of	019	2107	2000	020	1179	1000	1292	1440	1729	2280	
correspondences	813	3197	2909	930	1172	1233					

表2为对比结果,可看出SC-RANSAC、Adalam、 OANET、SuperGlue以及所提方法能得到较多的匹 配。因为RANSAC单纯通过"抽样-得出模型-模型 验证"反复迭代寻找匹配模型,所以RANSAC需要 大量迭代才能找到最佳匹配模型,并且在有限次迭 代下RANSAC较难找到最佳匹配模型。PROSAC 的抽样依赖 distance ratio, 上文已讨论 distance ratio 的可信度随视角差异的增大而降低。NAPSAC和 P-NAPSAC认为内点分布具有一定的聚集性,但是 这10组图像外点率较高,内点的分布在图像中较为 分散,聚集性不明显。SC-RANSAC利用内点在匹 配图像中的分布一致性对外点进行有效过滤,该方 法效果较为理想。所提方法与 Adalam、OANET 相 比效果较好,因为Adalam中关键点的选择依赖 distance ratio, OANET 是基于图匹配和深度学习的 方法,算法效果依赖样本的训练。SuperGlue 也是 一种基于图匹配的深度学习方法,并且引入了注意 力机制,效果显著优于OANET,所提方法略优于 SuperGlue。图15给出了不同方法的平均外点残留 率、平均内点数量以及平均运行时间。在外点残留 率方面,与其他算法相比,所提方法与Adalam算法 效果一致,可降低50%以上。在内点召回率方面, 与SuperGlue和OANET相比,所提方法可提高8% 以上。在运行时间方面,除了PROSAC,所提方法 可提高10%以上。

4.4 多平面估计实验

Adalam、SuperGlue 及 OANET 等算法虽然能 找到大部分内点,但是无法对平面进行估计,针对 平面估计问题已有多个算法被提出。Sequential RANSAC通过多次执行 RANSAC估计出多个图 像平面,当每次 RANSAC估计出一个平面时与该 平面相关的匹配被去除,然后再次执行 RANSAC。 PEARL^[33]和 Multi-H^[34]通过最小化能量函数对在相 同平面的匹配进行聚集,然后用 Mean-SIFT^[35]和α研究论文

Image	Indicator	RANSAC	PROSAC	NAPSAC	P-NAPSAC	SC-RANSAC	Adalam	OANET	SuperGlue	Proposed
. 8 .										method
	$n_{ m oi}$	14	24	7	17	34	67	41	63	64
Wash	$n_{ m or}$	5	3	2	5	2	6	0	3	3
	<i>t</i> /s	0.63	0.128	0.44	0.216	0.223	0.26	0.321	0.176	0.135
Scene	$n_{ m oi}$	5	8	4	16	27	10	76	92	123
0722	$n_{\rm or}$	5	4	1	2	4	0	48	2	1
	<i>t</i> /s	0.57	0.97	0.288	0.35	0.92	0.671	0.77	0.61	0.56
Saana	$n_{ m oi}$	7	59	8	32	58	59	121	95	127
0759	$n_{ m or}$	4	6	3	6	7	1	68	5	2
0756	<i>t</i> /s	0.78	0.49	0.62	0.73	0.75	0.64	0.76	0.52	0.63
C	$n_{ m oi}$	8	6	3	10	19	16	120	38	47
Scene 0726	$n_{\rm or}$	1	1	3	1	3	0	60	2	0
0720	<i>t</i> /s	0.93	0.183	0.419	0.299	0.314	0.301	0.351	$\begin{array}{c} \text{SuperGlue} & \Pr{o} \\ \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline \hline & \hline \hline \\ \hline & \hline \hline \\ \hline \hline & \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline$	0.213
Turnal	n _{oi}	r RANSAC PROSAC N 14 24 5 3 0.63 0.128 5 8 5 8 5 4 0.57 0.97 7 59 4 6 0.78 0.49 8 6 1 1 0.93 0.183 184 2 4 0 189 184 2 2 4 0 0.53 0.165 8 8 13 0.62 0.21 15 77 2 5 0.61 0.211 7 12 0 9 0.71 0.291 8 14 0 8 0.71 0.341 7 8 2 2 2 0.8 0.261	88	142	193	451	275	439	460	
Toys and	$n_{\rm or}$	2	4	7	3	5	1	59	4	1
Breads	<i>t</i> /s	0.53	0.165	0.42	0.36	0.39	0.43	0.411	0.308	0.253
	$n_{ m oi}$	8	28	7	29	60	NSAC Adalam OANET SuperGlue 4 67 41 63 2 6 0 3 223 0.26 0.321 0.176 7 10 76 92 4 0 48 2 92 0.671 0.77 0.61 8 59 121 95 7 1 68 5 75 0.64 0.76 0.52 9 16 120 38 3 0 60 2 314 0.301 0.351 0.233 93 451 275 439 5 1 59 4 39 0.43 0.411 0.308 00 43 69 104 5 112 205 135 3 3 55 4 39 0.383 0.416 0.294	83		
Graf	$n_{ m or}$	8	13	5	16	6	1	3	3	1
	<i>t</i> /s	0.62	0.21	0.392	0.411	0.43	SAC Adalam OANET Super 67 41 63 6 0 3 0.26 0.321 0.1 10 76 92 0 48 2 0.671 0.77 0.6 59 121 93 1 68 5 0.64 0.76 0.3 0 60 2 0.301 0.351 0.2 451 275 43 1 59 4 0.43 0.411 0.3 43 69 10 1 3 3 0.37 0.458 0.4 112 205 13 3 55 4 0.383 0.416 0.2 47 105 10 0 20 3 0.52 0.521 0.5 0 76 57	0.419	0.352	
0 1	n _{oi}	15	77	5	51	85	112	205	CT SuperGlue 63 3 0.176 92 2 0.61 95 5 0.52 38 2 0.52 38 2 0.0233 439 4 0.308 104 3 3 0.419 135 4 4 3 0.294 100 3 0.391 46 8 0.587 51 1 0.587 51 1 0.579 51	185
Wash Scene 0722 Scene 0758 Scene 0758 Toys and Breads Graf Scared Heart Saint Peter's Basilica Kremlin Potala	$n_{ m or}$	2	5	5	8	13	3	55	4	3
Heart	<i>t</i> /s	0.61	0.211	0.356	0.412	0.39	0.383	0.416	0.294	0.314
Saint	n _{oi}	7	12	5	35	73	47	105	100	116
Peter's	$n_{ m or}$	0	9	5	6	5	0	20	3	2
Basilica	<i>t</i> /s	0.71	0.291	0.652	0.489	0.521	0.477	0.503	0.391	0.401
Kremlin	$n_{ m oi}$	8	14	9	28	40	15	57	46	45
	$n_{ m or}$	0	8	7	3	6	0	7	8	1
	t/s	0.71	0.341	0.482	0.532	0.591	0.52	0.521	0.587	0.512
	$n_{ m oi}$	7	8	6	12	11	6	76	51	56
Potala	$n_{ m or}$	2	2	4	4	8	0	8	1	1
	<i>t</i> /s	0.8	0.261	0.611	0.542	0.665	0.651	0.639	0.579	0.599

表 2 对比结果 Table 2 Comparison results

图 15 不同算法在不同指标上平均性能的对比。(a)外点残留率;(b)得到的内点数;(c)运行所需时间 Fig. 15 Comparison of average performance of different algorithms on different criteria. (a) Undetected outlier ratio; (b) number of inliers; (c) consumption time

expansion^[33]对多平面进行估计。Multi-X^[36]在 PEARL基础上通过分布密度对相关匹配进行聚 集。MCT^[37]对匹配进行表征,然后通过表征信息进行聚类从而完成图像平面的估计。CONSAC^[38]通

研究论文

第 59 卷 第 12 期/2022 年 6 月/激光与光电子学进展

过学习和条件采样概率对图像内平面进行估计。 所提方法也可对匹配图像内平面进行估计,因为图 像中同一平面上的匹配具有一定的聚集性,所以需 要在算法步骤上进行调整,即在图9所示的算法中 将"从S中随机抽取m个匹配计算出当前模型G"改 为"从S中随机抽取一个匹配点,然后在这个匹配点 的近邻区域抽取m个匹配点计算出当前模型G"即 可。对数据集 Adelaidermf^[29]中的 10 组图像进行实 验,且将所提算法与PEARL、Multi-X、Multi-H、 CONSAC、MCT及 Sequential RANSAC算法进行 对比。图16为所提方法的平面估计效果,相同颜色 为同一平面。表3为错分率(在平面估计结果中被 错分的匹配点所占的比例)的对比,包括平面平均 错分率和平面平均错分标准差。在平均错分率上, 所提方法与Multi-X和Multi-H的效果较为接近,且 这三个算法显著低于其他算法,所提方法与Multi-X 相比平面错分率可有效降低 19%, 与 Multi-H 相比 平面错分率可有效降低16%。在平面平均错分标 准差上,所提方法也显著低于其他方法,这说明所 提方法有更稳定的表现。

图 16 所提方法在 Adelaidermf 数据集中的多平面估计效果。(a) ladysymon; (b) neem; (c) nese; (d) johnsona; (e) elderhallb; (f) unihouse; (g) bonhall; (h) napiera; (i) oldclassicswing; (j) library

Fig. 16 Multi-plane estimation obtained by the proposed method under Adelaidermf data set. (a) ladysymon; (b) neem; (c) nese; (d) johnsona; (e) elderhallb; (f) unihouse; (g) bonhall; (h) napiera; (i) oldclassicswing; (j) library

Table 3Plane error rate of different methodsunit									
Image	Number of planes	PEARL	Multi-X	Multi-H	CONSAC	МСТ	Sequential RANSAC	Proposed	
ladysymon	2	8.91	5.31	4.49	2.95	3.80	3.80	1.43	
neem	3	4.21	0.00	0.00	2.74	14.44	14.44	1.88	
nese	2	5.33	0.00	0.00	0.00	12.83	0.47	0.83	
johnsona	2	9.21	3.75	2.47	14.48	18.77	28.04	3.7	
elderhallb	5	10.33	6.45	5.31	11.69	20.31	18.67	5.28	
unihouse	5	9.91	6.39	7.21	8.84	10.69	10.69	2.99	
bonhall	6	15.63	7.91	8.22	16.93	29.29	20.43	8.19	
napiera	3	11.99	3.12	3.44	2.72	21.32	11.66	2.53	
oldclassicswing	2	6.11	0.00	0.00	1.69	15.2	1.32	0.02	
library	3	6.71	0.96	1.43	1.21	14.79	11.35	0.66	
Mean		8.834	3.389	3.257	6.325	16.144	12.09	2.72	
Average standard deviation		2.56	2.57	2.48	5.33	5.02	6.65	1.83	

表3 不同方法的平面错分率

结 5 论

提出了一种多模型估计算法,可有效对非刚体 匹配图像间的多个匹配模型进行估计。该方法分 为三步,这三步同时是本文提出的三个创新点。首 先,为了有效提升匹配点集合的内点率,提出了一 种基于近邻点分布一致性且自适应的外点过滤方 法;然后,为了在进行多模型估计的同时降低内点 距离误差,并且降低内点距离误差对算法迭代次数 的影响,提出了一种基于内点距离误差边缘化方法 的多模型估计算法;最后,为了去除可能残留的外 点,提出了基于匹配点位置变化矢量方向一致性的 外点二次去除方法。实验中,对所提方法与 MAGSAC, NM-NET, P-NAPSAC, SC-RANSAC,

研究论文

Adalam、OANET、SuperGlue、PEARL、Multi-H、 Multi-X及CONSAC等方法进行对比,结果表明所 提方法的内点距离误差可降低30%以上,外点残留 率可降低50%以上,内点召回率可提高8%以上, 运行时间可降低10%以上,多平面估计的错分率可 降低16%以上。

参考文献

- [1] 束安,裴浩东,段慧仙.空间非合作目标的三目立体 视觉测量方法[J].光学学报,2021,41(6):0615001.
 Shu A, Pei H D, Duan H X. Trinocular stereo visual measurement method for spatial non-cooperative target[J]. Acta Optica Sinica, 2021, 41(6):0615001.
- [2] Ma J Y, Zhao J, Tian J W, et al. Robust point matching via vector field consensus[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1706-1721.
- [3] Fischler M A. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
- [4] Myatt D R, Torr P H S, Nasuto S J, et al. NAPSAC: high noise, high dimensional robust estimation-it's in the bag[C]//Proceedings of the British Machine Vision Conference 2002, September 2-5, 2002, Cardiff, UK. London: British Machine Vision Association, 2002: 458-467.
- [5] Chum O, Matas J. Matching with PROSACprogressive sample consensus[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 20–25, 2005, San Diego, CA, USA. New York: IEEE Press, 2005: 220-226.
- [6] Sattler T, Leibe B, Kobbelt L. SCRAMSAC: improving RANSAC's efficiency with a spatial consistency filter[C]//2009 IEEE 12th International Conference on Computer Vision, September 29–October 2, 2009, Kyoto, Japan. New York: IEEE Press, 2009: 2090-2097.
- [7] Chum O, Matas J, Kittler J. Locally optimized RANSAC[M]//Michaelis B, Krell G. Pattern recognition. Lecture notes in computer science. Berlin: Springer, 2003, 2781: 236-243.
- [8] Barath D, Ivashechkin M, Matas J. Progressive NAPSAC: sampling from gradually growing neighborhoods[EB/OL]. (2019-06-05) [2021-05-06]. https://arxiv.org/abs/1906.02295.
- [9] Fotouhi M, Hekmatian H, Kashani-Nezhad M A, et al. SC-RANSAC: spatial consistency on RANSAC[J].

Multimedia Tools and Applications, 2019, 78(7): 9429-9461.

- [10] Barath D, Matas J, Noskova J. MAGSAC: marginalizing sample consensus[C]//2019 IEEE/ CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA. New York: IEEE Press, 2019: 10189-10197.
- [11] Lowe D G. Distinctive image features from scaleinvariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
- [12] Park Y H, Kwon O S. Multiple homographies estimation using a guided sequential RANSAC[J]. The Journal of the Korea Contents Association, 2010, 10(7): 10-22.
- [13] Cavalli L, Larsson V, Oswald M R, et al. AdaLAM: revisiting handcrafted outlier detection[EB/OL]. (2020-06-07)[2021-05-06]. https://arxiv.org/abs/2006.04250.
- [14] Torresani L, Kolmogorov V, Rother C. Feature correspondence via graph matching: models and global optimization[M]//Forsyth D, Torr P, Zisserman Z. Computer vision-ECCV 2008. Lecture notes in computer science. Heidelberg: Springer, 2008, 5303: 596-609.
- [15] Leordeanu M, Hebert M. A spectral technique for correspondence problems using pairwise constraints
 [C]//Tenth IEEE International Conference on Computer Vision (ICCV'05), October 17-21, 2005, Beijing, China. New York: IEEE Press, 2005: 1482-1489.
- [16] Liu H R, Yan S C. Common visual pattern discovery via spatially coherent correspondences[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010, San Francisco, CA, USA. New York: IEEE Press, 2010: 1609-1616.
- [17] Loiola E M, de Abreu N M M, Boaventura-Netto P O, et al. A survey for the quadratic assignment problem[J]. European Journal of Operational Research, 2007, 176(2): 657-690.
- [18] Sarlin P E, DeTone D, Malisiewicz T, et al. SuperGlue: learning feature matching with graph neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 13-19, 2020, Seattle, WA, USA. New York: IEEE Press, 2020: 4937-4946.
- [19] Caetano T S, McAuley J J, Cheng L, et al. Learning graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31

(6): 1048-1058.

- [20] Bian J W, Lin W Y, Matsushita Y, et al. GMS: grid-based motion statistics for fast, ultra-robust feature correspondence[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, HI, USA. New York: IEEE Press, 2017: 2828-2837.
- [21] Xie Y Y, Tang Y H, Tang G G, et al. Learning to find good correspondences of multiple objects[C]// 2020 25th International Conference on Pattern Recognition (ICPR), January 10-15, 2021, Milan, Italy. New York: IEEE Press, 2021: 2779-2786.
- [22] Yi K M, Trulls E, Ono Y, et al. Learning to find good correspondences[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE Press, 2018: 2666-2674.
- [23] Garcia-Garcia A, Gomez-Donoso F, Garcia-Rodriguez J, et al. PointNet: a 3D convolutional neural network for real-time object class recognition[C]//2016 International Joint Conference on Neural Networks (IJCNN), July 24-29, 2016, Vancouver, BC, Canada. New York: IEEE Press, 2016: 1578-1584.
- [24] Qi C R, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. (2017-06-07) [2021-05-06]. https:// arxiv.org/abs/1706.02413.
- [25] Zhang J, Sun D, Luo Z, et al. Learning two-view correspondences and geometry using order-aware network[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 27-November 2, 2019, Seoul, Korea(South). New York: IEEE Press, 2019: 5844-5853.
- [26] Zhao C, Cao Z G, Li C, et al. NM-net: mining reliable neighbors for robust feature correspondences [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA. New York: IEEE Press, 2019: 215-224.
- [27] Affine covariant features [EB/OL]. [2021-08-02]. https: //www.robots.ox.ac.uk/~vgg/research/affine/.

- [28] DATA: two-view geometry Kusvod2[EB/OL]. [2020-09-27]. http://cmp.felk.cvut.cz/data/geometry2view/.
- [29] CONSAC: robust multi-model fitting by conditional sample consensus, AdelaideRMF[EB/OL]. [2020-09-27]. https://github.com/fkluger/consac.
- [30] Dun Huang[EB/OL]. [2021-08-02]. http://www. dunhuangjiaxin. com/wp-content/uploads/2018/04/ 20170502123435-1.jpg.
- [31] Image Matching Challenge 2020[EB/OL]. [2021-08-02]. https://vision.uvic.ca/imw-challenge/index.md.
- [32] Tian Ya[EB/OL]. [2021-08-02]. http://dpic.tiankong. com/00/xs/QJ8913975824.jpg.
- [33] Isack H, Boykov Y. Energy-based geometric multimodel fitting[J]. International Journal of Computer Vision, 2012, 97(2): 123-147.
- [34] Barath D, Matas J, Hajder L. Multi-H: efficient recovery of tangent planes in stereo images[C]// Proceedings of the British Machine Vision Conference 2016, September 19-22, York, UK. London: British Machine Vision Association, 2016: 1-13.
- [35] Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
- [36] Barath D, Matas J. Multi-class model fitting by energy minimization and mode-seeking[M]//Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science. Cham: Springer, 2018, 11220: 229-245.
- [37] Magri L, Fusiello A. Fitting multiple heterogeneous models by multi-class cascaded T-linkage[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA. New York: IEEE Press, 2019: 7452-7460.
- [38] Kluger F, Brachmann E, Ackermann H, et al. CONSAC: robust multi-model fitting by conditional sample consensus[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 13-19, 2020, Seattle, WA, USA. New York: IEEE Press, 2020: 4633-4642.